Home
Class 12
MATHS
The value of the integral int0^(pi/2) (s...

The value of the integral `int_0^(pi/2) (sin^100x-cos^100x)dx` is (A) `1/100` (B) `(100!)/(100)^100` (C) `pi/100` (D) `0`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the integral int _(0)^(pi//2) (sin ^(100)x - cos^(100)x) dx is

The value of the integral int_(0)^(100pi) sqrt(1-cos2x)" d"x is

The value of the integral int_(0)^(100) sin(x-[x])pidx , is

Evaluate the following integral: int_0^(2pi)sin^(100)xcos^(101)x\ dx

The value of the integral I=int_(0)^(100pi)(dx)/(1+e^(sinx)) is equal to

The value of the integral int_0^(100pi) sqrt(1-cosx)dx is equal to (A) 300sqrt(2) (B) 200sqrt(2) (C) 400sqrt(2) (D) 500sqrt(2)

int sin^(5)x*cos^(100)xdx=

int_ (0) ^ (2 pi) sin ^ (100) x cos ^ (99) xdx