Home
Class 12
MATHS
Let L=lim(nrarroo)inta^oo (ndx)/(1+n^2x^...

Let `L=lim_(nrarroo)int_a^oo (ndx)/(1+n^2x^2)` where `a in R` then `cos L` can be (A) `-1` (B) `0` (C) `1` (D) `1/2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let L= lim_(nrarr infty) int_(a)^(infty)(n dx)/(1+n^(2)x^(2)) , where a in R, then L can be

let f(x)=lim_(n rarr oo)(x^(2n)-1)/(x^(2n)+1)

The limit L=lim_(nrarroo)Sigma_(r=1)^(n)(n)/(n^(2)+r^(2)) satisfies

lim_(x rarr oo)(an-(1+n^(2))/(1+n))=b, where a is a finite number,then a=1( b ) a=0 (c) b=1 (d) b=-1

lim_ (n rarr oo) int_ (0) ^ (2) (1+ (t) / (n + 1)) ^ (n) d

The limit L=lim_(nrarroo)Sigma_(r=4)^(n-4)(n)/(n^(2)+r^(2)) satisfies the relation

lim_(x rarr oo)(1+a^(2))^(x)(sin b)/((1+a^(2))^(x)), where a!=0

Let L=lim_(x rarr oo){((x+1)/(x-1))^(x)-e^(2))}x^(2) then the value of (9L)/(2e^(2)) is equal to

Let f(x)=lim_(n rarr oo)(cos x)/((1+tan^(-1)x)^(n)), then int_(0)^(oo)f(x)dx=

lim_(nrarroo) sum_(r=0)^(n-1) (1)/(sqrt(n^(2)-r^(2)))