Home
Class 12
MATHS
Let f(x)=int1^x 3^t/(1+t^2)dt, xgt0, the...

Let `f(x)=int_1^x 3^t/(1+t^2)dt, xgt0`, then (A) for `0 lt alpha lt beta, f(alpha) lt f(beta)` (B) for `0ltalphaltbeta, f(alpha)gtf(beta)` (C) `f(x)+pi/4lttan^-1x, AA xge1` (D) `f(x)+pi/4gttan^-1x, AA xge1`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=int_1^x(3^t)/(1+t^2)dx ,w h e r e x > 0. Then (a)for 0

Let f(x)=int_(1)^(x)(3^(t))/(1+t^(2))dt , where xgt0 , Then

Let f(x)=int_(0)^(x)(e^(t))/(t)dt(xgt0), then e^(-a)[f(x+1)-f(1+a)]=

Let int_(alpha)^( beta)(f(alpha+beta-x))/(f(x)+f(alpha+beta-x))dx=4 then

If f(x)=int_(-1)^(x)|t|dt , then for any xge0,f(x) equals

Let f(x) be a differentiable function and f(alpha)=f(beta)=0(alpha

If f(x)= alpha x+beta and f(0)=f^(')(0)=1 then f(2) =

If f(x)=alpha x+beta and f(0)=f^(1)(0)=1 then f(2) =

F(x)= int_(0)^(x)(cost)/((1+t^(2)))dt0lt=xlt=2pi . Then

f(alpha)=f'(alpha)=f''(alpha)=0,f(beta)=f'(beta)=f''(beta)=0 and f(x) is polynomial of degree 6, then