Home
Class 12
MATHS
Let phi(x,t)={(x(t-1),xlet),(t(x-1), tlt...

Let `phi(x,t)={(x(t-1),xlet),(t(x-1), tltx):}`, where `t` is a continuous function of `x` in `[0,1]`. Let `g(x)=int_0^1 f(t)phi(x,t)dt`, then `g\'\'(x)`= (A) `g(0)=1` (B) `g(0)=0` (C) `g(1)=1` (D) `g\'\'(x)=f(x)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let y(x,t)={x(t-1); when x<=t,t(x-1); when t

Let f(x)=int_(0)^(1)|x-t|dt, then

If int_0^x f(t)dt=x+int_x^1 t f(t)dt , then f(1)= (A) 1/2 (B) 0 (C) 1 (D) -1/2

Let f(x) be an odd continuous function which is periodic with period 2. if g(x)=int_(0)^(x) f(t)dt , then

Let f(x)=int_(0)^(x)(e^(t))/(t)dt(xgt0), then e^(-a)[f(x+1)-f(1+a)]=

Let G(x)=int e^(x)(int_(0)^(x)f(t)dt+f(x))dx where f(x) is continuous on R. If f(0)=1,G(0)=0 then G(0) equals

Let f ( x) = int _ 0 ^ x g (t) dt , where g is a non - zero even function . If f(x + 5 ) = g (x) , then int _ 0 ^ x f (t ) dt equals :

Let g(x)=int_(0)^(x)f(t)dt where fis the function whose graph is shown.

Let f(x)=int_(1)^(x)(3^(t))/(1+t^(2))dt , where xgt0 , Then