Home
Class 12
MATHS
Statement-1: If int0^oo e^(-ax)dx=1/a, t...

Statement-1: If `int_0^oo e^(-ax)dx=1/a`, then `int_0^oo x^me^(-ax)dx=(lfloorm)/a^(m+1)` ,Statement-2: `d^n/dx^n(e^(kx))=k^n e^(kx)` and `d^n/dx^n(1/x)=((-1)^nlfloorn)/x^(n+1)` (A) Both 1 and 2 are true and 2 is the correct explanation of 1 (B) Both 1 and 2 are true and 2 is not correct explanation of 1 (C) 1 is true but 2 is false (D) 1 is false but 2 is true

Promotional Banner

Similar Questions

Explore conceptually related problems

Statement-1: int_0^([x]) 4^(x-[x])dx=(3[x])/(2log2) ,Statement-2: int_0^([x]) a^(x-[x])dx=[x]int_0^1 a^(x-[x])dx (A) Both 1 and 2 are true and 2 is the correct explanation of 1 (B) Both 1 and 2 are true and 2 is not correct explanation of 1 (C) 1 is true but 2 is false (D) 1 is false but 2 is true

Let I_1=int_0^1 e^x/(1+x)dx and I_2=int_0^1(x^2e^(x^2))/(2-x^3)dx Statement-1: I_1/I_2=3e Statement-2: int_a^b f(x)dx=int_a^b f(a+b-x)dx (A) Both 1 and 2 are true and 2 is the correct explanation of 1 (B) Both 1 and 2 are true and 2 is not correct explanation of 1 (C) 1 is true but 2 is false (D) 1 is false but 2 is true

Assetion: a_1,a_2,a_3,…………. an are not in G.P. Reason: a_(n+1)=a_n (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

Assertion: 1sum_(r=0)^n(r+1).^nC_r=(n+2)2^(n-10 , Reason: sum_(r=0)^n(r+1).^nC_rx^r=(1+x)6n+nx(1+x)^(n-1) (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

Lines 15x-18y+1=0, 12x+10y-3=0 and 6x+66y-11=0 donot form a triangle. (2) |(15, -18, 1), (12, 10, -3), (6, 66, -11)|=0 (A) Both 1 and 2 are true and 2 is the correct explanation of 1 (B) Both 1 and 2 are true and 2 is not a correct explanation of 1 (C) 1 is true but 2 is false (D) 1 is false but 2 is true

Statement-1: Curve satisfying the differential equation dy/dx=y/(2x) and passing through the point (2,1) is a parabola having focus (1/2,0) Statement-2: The differential equation dy/dx=y/(2x) is homogeneous. (A) Both 1 and 2 are true and 2 is the correct explanation of 1 (B) Both 1 and 2 are true and 2 is not correct explanation of 1 (C) 1 is true but 2 is false (D) 1 is false but 2 is true

Let the area bounded by the curve y=f(x) , x-axis and the ordinates x=1 and x=a be (a-1)sin(3a+4) .Statement-1: f(x)=sin(3x+4)+3(x-1)cos(3x+4) .Statement-2: If y=int_(g(x))^(h(x)) f(t)dt , then dy/dx=f(h(x)) h\'(x)-f(g(x)) g\'(x) . (A) Both 1 and 2 are true and 2 is the correct explanation of 1 (B) Both 1 and 2 are true and 2 is not correct explanation of 1 (C) 1 is true but 2 is false (D) 1 is false but 2 is true

Statement-1: int_-3^3 x^8{x^9}dx=2xx3^7 , where {x} denotes the fractional part of x .Statement-2: [x]+[-x]=-1 , if x is not an integer, where [x] denotes the integral part of x . (A) Both 1 and 2 are true and 2 is the correct explanation of 1 (B) Both 1 and 2 are true and 2 is not correct explanation of 1 (C) 1 is true but 2 is false (D) 1 is false but 2 is true

Statement-1: Solution of the differential equation dy/dx tany=sin(x+y)+sin(x-y) is secy+2cosx=c .Statement-2: The differential equation dy/dx tany=sin(x+y)+sin(x-y) is (A) Both 1 and 2 are true and 2 is the correct explanation of 1 (B) Both 1 and 2 are true and 2 is not correct explanation of 1 (C) 1 is true but 2 is false (D) 1 is false but 2 is true

Statement-1: The area of the region R={(x,y) : |x| le |y| and x^2+y^2 le 1} is pi/4 sq. units.Statement-2: Curves |y|=|x| and x^2+y^2=1 symmetric about both x and y-axis. (A) Both 1 and 2 are true and 2 is the correct explanation of 1 (B) Both 1 and 2 are true and 2 is not correct explanation of 1 (C) 1 is true but 2 is false (D) 1 is false but 2 is true