Home
Class 12
MATHS
If mgt0, ngt0, the definite integral I=i...

If `mgt0, ngt0`, the definite integral `I=int_0^1 x^(m-1)(1-x)^(n-1)dx` depends upon the values of `m` and `n` is denoted by `beta(m,n)`, called the beta function.For example, `int_0^1 x^3 (1-x)^4dx=int_0^1 x^(4-1) (1-x)^(5-1) dx=beta(4,5)` and `int_0^1 x^(3/2) (1-x)^((-1)/2)dx=int_0^1 x^(5/2-1) (1-x)^(1/2-1)dx=beta(5/2,1/2)`.Obviously, `beta(n,m)=beta(m,n)`.Now answer the question:If `int_0^2 (8-x^3)^((-1)/3)dx=kbeta(1/3,2/3)`, then `k` equals to (A) `1` (B) `1/2` (C) `1/3` (D) `1/4`

Promotional Banner

Similar Questions

Explore conceptually related problems

If mgt0, ngt0 , the definite integral I=int_0^1 x^(m-1)(1-x)^(n-1)dx depends upon the values of m and n is denoted by beta(m,n) , called the beta function.For example, int_0^1 x^3 (1-x)^4dx=int_0^1 x^(4-1) (1-x)^(5-1) dx=beta(4,5) and int_0^1 x^(3/2) (1-x)^((-1)/2)dx=int_0^1 x^(5/2-1) (1-x)^(1/2-1)dx=beta(5/2,1/2) .Obviously, beta(n,m)=beta(m,n) .Now answer the question:If int_0^oo x^(m-1)/(1+x)^(m+n)dx=k int_0^oo x^(n-1)/(1+x)^(m+n)dx , then k is equal to (A) m/n (B) 1 (C) n/m (D) none of these

If mgt0, ngt0 , the definite integral I=int_0^1 x^(m-1)(1-x)^(n-1)dx depends upon the values of m and n is denoted by beta(m,n) , called the beta function.For example, int_0^1 x^3 (1-x)^4dx=int_0^1 x^(4-1) (1-x)^(5-1) dx=beta(4,5) and int_0^1 x^(3/2) (1-x)^((-1)/2)dx=int_0^1 x^(5/2-1) (1-x)^(1/2-1)dx=beta(5/2,1/2) .Obviously, beta(n,m)=beta(m,n) .Now answer the question:The integral int_0^(pi/2) cos^(2m)theta sin^(2n)theta d theta= (A) 1/2beta(m+1/2,n+1/2) (B) 2beta(2m,2n) (C) beta(2m+1,2n+1) (D) none of these

If m gt 0, n gt 0 , the definite integral l=int_(0)^(1)x^(m-1)(1-x)^(n-1)dx depends upon the vlaues of m and n and is denoted by beta(m,n) , called the beta function. E.g. int_(0)^(1)x^(4)(1-x)^(5)dx=int_(0)^(1)x^(5-1)(1-x)^(6-1)dx=beta(5, 6) and int_(0)^(1)x^(5//2)(1-x)^(-1//2)dx=int_(0)^(1)x^(7//2-1)(1-x)^(1//2-1)dx=beta((7)/(2),(1)/(2)) . Obviously, beta(n, m)=beta(m, n) . If int_(0)^(n)(1-(x)/(n))^(n)x^(k-1)dx=R beta(k, n+1) , then R is equal to

If m gt 0, n gt 0 , the definite integral l=int_(0)^(1)x^(m-1)(1-x)^(n-1)dx depends upon the vlaues of m and n and is denoted by beta(m,n) , called the beta function. E.g. int_(0)^(1)x^(4)(1-x)^(5)dx=int_(0)^(1)x^(5-1)(1-x)^(6-1)dx=beta(5, 6) and int_(0)^(1)x^(5//2)(1-x)^(-1//2)dx=int_(0)^(1)x^(7//2-1)(1-x)^(1//2-1)dx=beta((7)/(2),(1)/(2)) . Obviously, beta(n, m)=beta(m, n) . The integral int_(0)^(pi//2)cos^(2m)theta sin^(2n) theta d theta is equal to

If I(m,n)=int_(0)^(1)x^(m-1)(1-x)^(n-1)dx, then

int_0^1(dx)/(1-x^2)\

int_0^1 x^2(1-x)^(3/2) dx=

Evaluate int_0^1 (1/x)(1-x^3)^(-1/2) dx