Home
Class 12
MATHS
Let I=int0^(10pi) (cos6xcos7xcos8xcos9x)...

Let `I=int_0^(10pi) (cos6xcos7xcos8xcos9x)/(1+e^(2sin^3 4x))dx`Now answer the question:If `I=C int_0^(pi/2) cos6xcos8xcos2xdx`, then `C`= (A) `5` (B) `10` (C) `20` (D) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

Let I=int_0^(10pi) (cos6xcos7xcos8xcos9x)/(1+e^(2sin^3 4x))dx Now answer the question:If I=k int_0^(pi/2) cos6xcos7xcos8xcos9xdx , then k = (A) 5 (B) 10 (C) 20 (D) none of these

int_0^(pi/2) sin^2xcos^3xdx

int_0^(pi/2) sin^2xcos^2xdx

int cosx cos2xcos3x dx=

int_(0)^( pi/2)sin^2xcos xdx

Let I=int_0^(10pi) (cos6xcos7xcos8xcos9x)/(1+e^(2sin^3 4x))dx Now answer the question:The value of I equals (A) (5pi)/4 (B) (5pi)/8 (C) (5pi)/16 (D) (5pi)/32

int_0^pi xcos^2xdx

inte^(x)sinxcosxcos2xcos4xdx

int_(0)^(pi)(sin2xcos3x)dx=?