Home
Class 12
MATHS
Let I=int0^(10pi) (cos6xcos7xcos8xcos9x)...

Let `I=int_0^(10pi) (cos6xcos7xcos8xcos9x)/(1+e^(2sin^3 4x))dx`Now answer the question:The value of `I` equals (A) `(5pi)/4` (B) `(5pi)/8` (C) `(5pi)/16` (D) `(5pi)/32`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let I=int_0^(10pi) (cos6xcos7xcos8xcos9x)/(1+e^(2sin^3 4x))dx Now answer the question:If I=k int_0^(pi/2) cos6xcos7xcos8xcos9xdx , then k = (A) 5 (B) 10 (C) 20 (D) none of these

Let I=int_0^(10pi) (cos6xcos7xcos8xcos9x)/(1+e^(2sin^3 4x))dx Now answer the question:If I=C int_0^(pi/2) cos6xcos8xcos2xdx , then C = (A) 5 (B) 10 (C) 20 (D) none of these

int_0^(pi/2) sin^2xcos^3xdx

cos^-1 {-sin((5pi)/6)}= (A) - (5pi)/6 (B) (5pi)/6 (C) (2pi)/3 (D) -(2pi)/3

int_(0)^(pi)(sin2xcos3x)dx=?

The value of sin^(-1)(cos(33pi)/5) is (3pi)/5 (b) pi/(10) (c) pi/(10) (d) (7pi)/5

The value of sin ""(pi)/(16) sin ""(3pi)/(16) sin ""(5pi)/(16) sin ""(7pi)/(16) is

The value of cos(pi)/(5)cos.2(pi)/(5)cos4(pi)/(5)cos8(pi)/(5)=