Home
Class 12
MATHS
If f(x) is an integrable function and f^...

If `f(x)` is an integrable function and `f^-1(x)` exists, then `int f^-1(x)dx` can be easily evaluated by using integration by parts. Sometimes it is convenient to evaluate `int f^-1(x)dx` by putting `z=f^-1(x)`.Now answer the question.If `I_1=int_a^b[f^2(x)-f^2(a)]dx` and `I_2=int_(f(a))^(f(b)) 2x[b-f^-1(x)]dx!=0`, then `I_1/I_2=` (A) `1:2` (B) `2:1` (C) `1:1` (D) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=e^x/(1+e^x), I_1=int_(f(-a))^(f(a)) xg(x(1-x))dx and I_2=int_(f(-a))^(f(a)) g(x(1-x))dx , then I_2/I_1 = (A) -1 (B) -3 (C) 2 (D) 1

If I_(1)=int_(3pi)^(0) f(cos^(2)x)dx and I_(2)=int_(pi)^(0) f(cos^(2)x) then

Let f be a function defined by f(x)=4^x/(4^x+2) I_1=int_(f(1-a))^(f(a)) xf{x(1-x)}dx and I_2=int_(f(1-a))^(f(a)) f{x(1-x)}dx where 2a-1gt0 then I_1:I_2 is (A) 2 (B) k (C) 1/2 (D) 1

If f(x) is integrable over [1,2] then int_(1)^(2)f(x)dx is equal to

if f(x)=|x-1| then int_(0)^(2)f(x)dx is

If f'(x) = f(x)+ int _(0)^(1)f (x) dx and given f (0) =1, then int f (x) dx is equal to :

Let f(x) be a continous function on R. If int_(0)^(1)[f(x)-f(2x)]dx=5 and int_(0)^(2)[f(x)-f(4x)]dx=10 then the value of int_(0)^(1)[f(x)-f(8x)]dx=

Let f be a positive function.If I_(1)=int_(1-k)^(k)xf[x(1-x)]dx and I_(2)=int_(1-k)^(k)f[x(1-x)]backslash dx, where 2k-1>0. Then (I_(1))/(I_(2)) is