Home
Class 12
MATHS
Let u=int0^1("ln"(x+1))/(x^2+1)dxa n dv=...

Let `u=int_0^1("ln"(x+1))/(x^2+1)dxa n dv=int_0^(pi/2)ln(sin2x)dx ,t h e n` `u=-pi/2ln2` (b) `4u+v=0` `u+4v=0` (d) `u=pi/8ln2`

Promotional Banner

Similar Questions

Explore conceptually related problems

int_0^(pi//2)log(tanx)dx

Let u=int_(0)^(1)(ln(x+1))/(x^(2)+1)dx and v=int_(0)^((pi)/(2))ln(sin2x)dx, thenu=-(pi)/(2)ln2(b)4u+v=0u+4v=0 (d) u=(pi)/(8)ln2

int_(0)^((pi)/(2))log(sin2x)dx

int_(0)^((pi)/(2))log(sin x)dx

int_(0)^(pi)log sin^(2)x dx=

int_(0)^( pi)cos2x*log(sin x)dx

Show that int_(0)^((pi)/(2))log(sin2x)dx=-(pi)/(2)(log2)

If I_(1)=int_(0)^(pi//2)log (sin x)dx and I_(2)=int_(0)^(pi//2)log (sin 2x)dx , then

(1)/(pi ln2)int_((pi)/(2))^(0)ln sin2xdx=