Home
Class 12
MATHS
Let a=int0^(log2) (2e^(3x)+e^(2x)-1)/(e^...

Let `a=int_0^(log2) (2e^(3x)+e^(2x)-1)/(e^(3x)+e^(2x)-e^x+1)dx`, then `4e^a`=

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

int(e^(x))/((e^(3x)-3e^(2x)-e^(x)+3))dx

int (e^(2x) +e^(-2x))/(e^(x)) dx

int_(0)^(log 2)(e^(x))/(1+e^(x))dx=

int_(0)^(1)(e^(x))/(1+e^(2x))dx

int (e ^ (2x) -1) / (e ^ (2x) +1) dx

int (e ^ (3x) + e ^ (x)) / (e ^ (4x) -e ^ (2x) +1) dx

int(1)/(3e^(x)+2e^(-x))dx=

int(e^(x))/((e^(x)-1)(e^(x)+2))dx=

int_(0)^(1)(e^(x))/((1+e^(2x)))dx

int(e^(x))/((1+e^(x))(2+e^(x)))dx