Home
Class 12
MATHS
If I=int(-2pi)^(5pi) cot^-1(tanx)dx. The...

If `I=int_(-2pi)^(5pi) cot^-1(tanx)dx`. Then, `2I/pi^2` is ….

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(-pi)^(5pi)cot^(-1)(cotx)dx equals

I=int_(0)^(2 pi)cos^(-1)(cos x)dx

I_(n)=int_(pi/4)^(pi/2)(cot^(n)x)dx , then :

If I=int_(-pi/2)^(pi/2) 1/(1+e^(sinx))dx then I is

int_(pi//4)^(pi//2)cot^(2)x dx =

I=int_(0)^(2 pi)cos^(5)x*dx

The value of int_(-2pi)^(5pi) cot^(-1)(tan x) dx is equal to

The value of int_(-2 pi)^(5 pi)cot^(-1)(tan x)dx is equal to (7 pi)/(2)(b)(7 pi^(2))/(2)(c)(3 pi)/(2) (d) None of these

int_0^(pi//2)log(tanx)dx

STATEMENT-1 : int_(-2pi)^(5pi)cot^(-1)(tanx)dx=7(pi^(2))/(2) and STATEMENT-2 : int_(a)^(b)f(x)dx=int_(a)^(c )f(x)dx+int_(c )^(b)f(x)dx , a lt c lt b