Home
Class 12
MATHS
The area bounded by y=|e^|x|-e^(-x)|, th...

The area bounded by `y=|e^|x|-e^(-x)|`, the x-axis and `x=1` is (A) `int_0^1 (e^x-e^(-x))dx` (B) `e+e^(-1)-2` (C) `e+e^(-1)+2` (D) `(sqrt(e)-1/sqrt(e))^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(1)e^(2x)e^(e^(x) dx =)

int_(0)^(1)(e^(x))/(1+e^(2x))dx

int_(0)^(1)(e^(-2x))/(1+e^(-x))dx=

int_(0)^(1)(e^(x))/((1+e^(2x)))dx

int sqrt((e^(3x)-e^(2x))/(e^(x)+1))dx

int (e^(2x)-1)/(e^(2x)+1) dx=?

(i) int (dx)/(e^x+e^(-x)) (ii) int e^x/(e^(2x)+1) dx

int(e^(2x)+1)/(e^(2x)-1)dx=

int(e^(2x-1)-e^(1-2x))/(e^(x+2))dx

int(e^(2x))/(sqrt(1-e^(2x)))dx