Home
Class 12
MATHS
If dy/dx+2ytanx=sinx and y=0, when x=pi/...

If `dy/dx+2ytanx=sinx` and `y=0`, when `x=pi/3`, show that the maximum value of `y` is `1/3`

Promotional Banner

Similar Questions

Explore conceptually related problems

dy/dx+2ytanx=sinx at y=0, when x=pi/3

If y=yır) is the solution of the differential equation, (dy)/(dx) + 2 y tan x = sin x, y ((pi)/(3))= 0, then the maximum value of the function y(x) over R is equal to :

If (dy)/(dx)=e^(-2y) and y=0 when x=5, then the value of x for y=3 is

(dy/dx)+(2/x)y=sinx , x gt 0

dy/dx+2ytanx = Sinx , y(pi/3)=0 , maximum value of y(x) is

If y =(2 - 3 cos x)/sinx , find dy/dx at x=pi/4

If ((2+cosx)/(3+y))(dy)/(dx)+sinx=0 and y(0)=1 , then y((pi)/(3)) is equal to