Home
Class 12
MATHS
(dy)/(dx)+y/x logy=y/x^2 (logy)^2...

`(dy)/(dx)+y/x logy=y/x^2 (logy)^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

(dy)/(dx)-(y)/(x)=2x^(2)

If y^(x)=e^(y-x) , then prove that (dy)/(dx) = ((1+logy)^(2))/(logy)

x (dy)/(dx) + 2y = x ^(2)

If x^y= y^x , prove that (dy)/(dx)=((y/x-logy))/((x/y-logx))

x(dy)/(dx)=y(logy-logx+1)

x(dy)/(dx)+(y^(2))/(x)=y

"If "y=a^(x^(a^(x...oo)))", prove that "(dy)/(dx)=(y^(2)(logy))/(x[1-y(logx)(logy)]).

Solve: x(dy)/(dx)=y(logy-logx-1)

Solve x(dy)/(dx)=y(logy-logx+1)

Show that if x^(y)+y^(x)=m^(n) , then : dy/dx=-(y^(x)logy+yx^(y-1))/(x^(y)logx+xy^(x-1)) .