Home
Class 12
MATHS
xy-dy/dx=y^3e^(-x^2)...

`xy-dy/dx=y^3e^(-x^2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Solution of xy-(dy)/(dx)=y^(3)e^(-x^(2)) is

y The differential equation of all circles passing through the origin and having their centres on the x-axis is (1)x^(2)=y^(2)+xy(dy)/(dx) (2) x^(2)=y^(2)+3xy(dy)/(dx)y^(2)=x^(2)+3xy(dy)/(dx)y^(2)=x^(2)-2xy(dy)/(dx)

The solution of the differential equation (e^(x^(2))+e^(y^(2)))y(dy)/(dx)+e^(x^(2))(xy^(2)-x)=0is

Solve : (dy)/(dx)=(y^(3)+2x^(2)y)/(x^(3)+2xy^(2)) .

Solve the following differential equations: (dy)/(dx)=1+x+y+xy( ii) y-x(dy)/(dx)=a(y^(2)+(dy)/(dx))

x^2(dy/dx)^2-2xy dy/dx+2y^2-x^2=0

Directions: In the following questions, A statement of Assertion (A) is followed by a statement of Reason (R). Mark the correct choice as Solution of the differential equation (dy)/(dx)=e^(3x-2y)+x^2e^(-2y) is (e^(2y))/(2)=(e^(3x))/(3)+(x^2)/(2)+C Reason (R) : (dy)/(dx)=e^(3x-2y)+x^2e^(-2y) (dy)/(dx)=e^(-2y)(e^(3x)+x^2) separating the variables e^(2y)dy=(e^(3x)+x^2)dx int e^(2y)dy=int(e^(3x)+x^2)dx (e^(2y))/(2)=(e^(3x))/(3)+(x^3)/(3)+C .

(dy)/(dx)=x^(3)y^(3)-xy

(dy)/(dx)=(y^(2)-x)/(xy+y)