Home
Class 12
MATHS
The differential equation satisfied by s...

The differential equation satisfied by `sqrt(1+x^2)+sqrt(1+y^2)=k(xsqrt(1+y^2)-ysqrt(1+x^2)), k in R` is (A) `dy/dx=(1+y^2)/(1+x^2)` (B) `dy/dx=(1+x^2)/(1+y^2)` (C) `dy/dx=(1+x^2)(1+y^2)` (D) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the (dy)/(dx) of sqrt(1-x^2)+sqrt(1-y^2)=a(x-y)

Solve the following differential equation: x sqrt(1-y^(2))dx+y sqrt(1-x)dy=0

if y=(sqrt(x^(2)+1)+sqrt(x^(2)-1))/(sqrt(x^(2)+1)-sqrt(x^(2)-1)), then (dy)/(dx) is

General solution of x sqrt(1-y^(2))dx-ysqrt(1-x^(2))dy=0 is

(y^(2))/(x^(2))(dx)/(dy)=(y+1)/(x+1)

If sqrt(1-x^(2)) + sqrt(1-y^(2))=a(x-y) , then prove that (dy)/(dx) = sqrt((1-y^(2))/(1-x^(2)))

If x=ysqrt(1-y^(2)) , then (dy)/(dx)=

(dy)/(dx) = sqrt((1-y^(2))/(1-x^(2)))

If x sqrt(1+y)+y sqrt(1+x)=0, prove that (dy)/(dx)=-(1)/((x+1)^(2))