Home
Class 12
MATHS
x=f(t) satisfies (d^2x)/dt^2=2t+3 and fo...

`x=f(t)` satisfies `(d^2x)/dt^2=2t+3` and for `t=0, x=0, dx/dt=0`, then `f(t)` is given by (A) `t^3+t^2/2+t` (B) `(2t^3)/3+(3t^2)/2+t` (C) `t^3/3+(3t^2)/2` (D) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

Let y=x^(3)-8x+7 and x=f(t). If (dy)/(dt)=2 and x=3 at t=0, then (dx)/(dt) at t=0 is given by 1 (b) (19)/(2)(c)(2)/(19) (d) none of these

f (x) = int _(0) ^(x) e ^(t ^(3)) (t ^(2) -1) (t+1) ^(2011) dt (x gt 0) then :

t^(3)+t^(2)+t+6=0

If the solution of the equation (d^(2)x)/(dt^(2))+4(dx)/(dt)+3x = 0 given that for t = 0, x = 0 and (dx)/(dt) = 12 is in the form x = Ae^(-3t) + Be^(-t) , then

If f(x) = int_(0)^(x) e^(t^(2)) (t-2) (t-3) dt for all x in (0, oo) , then

If int_0^x f(t)dt=x+int_x^1 t f(t)dt , then f(1)= (A) 1/2 (B) 0 (C) 1 (D) -1/2

If u=sin^(-1)(x-y),x=3t,y=4t^(3) , then what is the derivative of u with respect to t? (A) 3(1-t^2) (B) 3(1-t^2)^(-1/2) (C) 5(1-t^2)^(-1/2) (D) 5(1-t^2)

Given that s=t^(2)+2t+3 . Find (ds)/(dt) .