Home
Class 12
MATHS
Differential equation of all tangents to...

Differential equation of all tangents to the parabola `y^2=4ax` is (A) `y=mx+a/m , m!=0` (B) `y_1(yy_1-x)=a` (C) `xy_1^2-yy_1+a=0` (D) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

The line y=mx+1 is a tangent to the parabola y^2 = 4x if (A) m=1 (B) m=2 (C) m=4 (D) m=3

The order and degree of the differential equation of all tangent lines to the parabola y=x^(2) is ( a )1,2 (b) 2,3 (c) 2,1 (d) 1,1

Prove that the tangent to the parabola y^(2)=4ax at ((a)/(m^(2)),(2a)/(m)) is y=mx+(a)/(m)

Prove that the tangent to the parabola y^(2)=4ax at ((a)/(m^(2)),(2a)/(m)) is y=mx+(a)/(m)

If the line y=mx+1 is tangent to the parabola y^(2)=4x, then find the value of m .

The equation of the tangent to the curve y=sec x at the point (0,1) is (a) y=0 (b) x=0 (c) y=1 (d) x=1

If y+3=m_1(x+2) and y+3=m_2(x+2) are two tangents to the parabola y_2=8x , then (a)m_1+m_2=0 (b) m_1+m_2=-1 (c)m_1+m_2=1 (d) none of these

If the tangents to the parabola y^(2)=4ax at (x_1,y_1) and (x_2,y_2) meet on the axis then x_1y_1+x_2y_2=

If the tangents to the parabola y^(2)=4ax at (x_(1),y_(1)),(x_(2),y_(2)) intersect at (x_(3),y_(3)) then