Home
Class 12
MATHS
Solution of x dy/dx+y=xe^x is (A) xy=e^x...

Solution of `x dy/dx+y=xe^x` is (A) `xy=e^x(x+1)+C` (B) `xy=e^x(x-1)+C` (C) `xy=e^x(1-x)+C` (D) `xy=e^y(y-1)+C`

Promotional Banner

Similar Questions

Explore conceptually related problems

The solution of y(2xy+e^x)dx-e^xdy=0 is (A) x^2+ye^(-x)=C (B) xy^2+e^(-x)=C (C) x/y+e^(-x)/x^2=C (D) x^2+e^x/y=C

The general solution of the differential equation (d^2y)/dx^2=e^(-3x) is (A) y=9e^(-3x)+C_1x+C_2 (B) y=-3e^(-3x)+C_1x+C_2 (C) y=3e^(-3x)+C_1x+C_2 (D) y=e^(-3x)/9+C_1x+C_2

The general solution of the differential equation (dy)/(dx)=e^(x+y) is (A) e^x+e^(-y)=C (B) e^x+e^y=C (C) e^(-x)+e^y=C (D) e^(-x)+e^(-y)=C

Solution of xy-(dy)/(dx)=y^(3)e^(-x^(2)) is

The solution of the equation dy/dx=x^3y^2+xy is (A) x^2y-2y+1=cye^(-x^2/2) (B) xy^2+2x-y=ce^(-y/2) (C) x^2y-2y+x=cxe^(-y/2) (D) none of these

e^(dy//dx)=1 A) y=x+c B) y=e^(x)+c C) y=c D) y=cx+d

If xy=e^(x-y), find (dy)/(dx)

The solution of the equation (e^x+1)ydy+(y+1)dx=0 , is (A) e^(x+y)=C(y+1)e^x (B) e^(x+y)=C(x+1)(y+1) (C) e^(x+y)=C(y+1)(1+e^x) (D) e^(xy)=C(x+y)(e^x+1)

If (dy)/(dx)=(xy+y)/(xy+x), then the solution of the differential equation is (A) y=xe^(x)+c(B)y=e^(x)+c(C)y=Axe^(x-y)(D)y=x+A

The integrating factor of the differential equation dy/dx+y=(1+y)/x is (A) x/e^x (B) e^x/x (C) xe^x (D) e^x