Home
Class 12
MATHS
The function f(k)= int0^k dx/(1-cosk*cos...

The function `f(k)= int_0^k dx/(1-cosk*cosx)` satisfies the differential equation (A) `(df)/(dk)+2f(k)*cotk=0` (B) `(df)/(dk)+2f(x)*cosk=0` (C) `(df)/(dk)-2f(x)cos^2k` (D) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

Let y =f (x) satisfies the differential equation xy (1+y) dx =dy . If f (0)=1 and f (2) =(e ^(2))/(k-e ^(2)), then find the value of k.

If f(x) is a differentiable real valued function such that f(0)=0 and f\'(x)+2f(x) le 1 , then (A) f(x) gt 1/2 (B) f(x) ge 0 (C) f(x) le 1/2 (D) none of these

int_0^a[f(x)+f(-x)]dx= (A) 0 (B) 2int_0^a f(x)dx (C) int_-a^a f(x)dx (D) none of these

If f satisfies the relation f(x+y)+f(x-y)=2f(x)f(y)AA x,y in K and f(0)!=0; then f(10)-f(-10)-

Let f(x) be a continuous function in R such that f(x)+f(y)=f(x+y) , then int_-2^2 f(x)dx= (A) 2int_0^2 f(x)dx (B) 0 (C) 2f(2) (D) none of these

The jump value of the function at the point of the discontinuity of the function f(x)=(1-k^(1/x))/(1+k^(1/x))(k>0) (k=1) is: (A) 4 (B) 2 (C) 3 (D) None of these

If f(x) is twice differentiable in x in[0,pi] such that f(0)=f(pi)=0 and int_(0)^((pi)/(2))(f(2x)+f'(2x))sin x cos xdx=k pi ,then k is

If f(x) and g(x) be continuous functions in [0,a] such that f(x)=f(a-x),g(x)+g(a-x)=2 and int_0^a f(x)dx=k , then int_0^a f(x)g(x)dx= (A) 0 (B) k (C) 2k (D) none of these

If int_(0)^(npi) f(cos^(2)x)dx=k int_(0)^(pi) f(cos^(2)x)dx , then the value of k, is

Let f(x) be a continuous function such that f(a-x)+f(x)=0 for all x in [0,a] . Then int_0^a dx/(1+e^(f(x)))= (A) a (B) a/2 (C) 1/2f(a) (D) none of these