Home
Class 12
MATHS
If f(x) is differentiable, then the solu...

If `f(x)` is differentiable, then the solution of `dy+f\'(x)(y-f(x))dx=0` is (A) `yf(x)=Ce^(-f(f(x))^2)` (B) `y+1=f(x)+Ce^(-f(x))` (C) `f(x)=Cye^(-y^2/2)` (D) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

dy/dx+y f\'(x)-f(x)f\'(x)=0

The solution of (dy)/(dx)+yf'(x)-f(x).f'(x)=0,y!=f(x) is

Let f(x)=|x-1|* Then (a) f(x^(2))=(f(x))^(2) (b) f(x+y)=f(x)+f(y)(c)f(|x|)-|f(x)| (d) none of these

The solution of the differential equation,f(x)=(dy)/(dx)+f'(x)y=1 is (A)x=yf(x)+c(B)x*f^(-1)(x)+c=0 (C) y=(x+c)/(f(x)) (d) non of these

Given the function f(x)=(a^(x)+a^(-x))/(2)(wherea>2)dot Then f(x+y)+f(x-y)= (A) 2f(x).f(y) (B) f(x).f(y) (C) (f(x))/(f(y)) (D) none of these

Solution of differential equation f(x)(dy)/(dx)=(f(x))^(2)+f(x)y+f(x)'*y is :(1)y=f(x)+ce^(x)(2)y=-f(x)+ce^(x)(3)y=-f(x)+ce^(x)f(x)(4)y=cf(x)+e^(x)

If f(x) be a differentiable function,such that f(x)f(y)+2=f(x)+f(y)+f(xy);f'(0)=0,f'(1)=2 then find f(x)

The solution of the D.E (dy)/(dx)=(y*f'(x)-y^(2))/(f(x)) equal to

If f(x) be a differentiable function such that f(x+y)=f(x)+f(y) and f(1)=2 then f'(2) is equal to