Home
Class 12
MATHS
The solution of (x^2+xy)dy=(x^2+y^2)dx i...

The solution of `(x^2+xy)dy=(x^2+y^2)dx` is (A) `logx=log(x-y)+y/x+C` (B) `logx=2log(x-y)+y/x+C` (C) `logx=log(x-y)+x/y+C` (D) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

The solution of dy/dx+(xy^2-x^2y^3)/(x^2y+2x^3y^2)=0 , is (A) log(y^2/x)-1/(xy)=C (B) log(x/y)+y^2/x=C (C) log(x^2y)+y^2/x=C (D) none of these

The solution of xy.log((x)/(y))dx+{y^(2)-x^(2)log((x)/(y))}dy =

The solution of xdy=(2y+2x^4+x^2)dx , is (A) y=x^4+xlogx+C (B) y=x^2+xlogx+C (C) y=x^4+x^2logx+C (D) none of these

The solution of cos(x+y)dy=dx is (A) y=cos^-1(y/x)+C (B) y=xsec(y/x)+C (C) y=tan((x+y)/2)+C (D) none of these

The solution of the equation xdy-ydx=sqrt(x^2-y^2)dx subject to the condition y(1)=0 is (A) y=xsin(logx) (B) y=x^2 sin(logx) (C) y=x^2(x-1) (D) none of these

If x dy/dx=y(logy-logx+1) , then the solution of the differential equation is (A) log(x/y)=Cy (B) log(y/x)=Cy (C) log(x/y)=Cx (D) log(y/x)=Cx

log_(2)x+log_(x)2=(10)/(3)=log_(2)y+log_(y)2 and x!=y, the x+y2(b)65/8(c)37/6 (d) none of these

solve (dy) / (dx) + (y) / (x) * log y = (y) / (x ^ (2)) (log y) ^ (2)

x dy/dx+y=y^2 logx

The solution of (2x+4y+3)*(dy)/(dx)=2y+x+1 is 1) log|4x-8y+5|=4x+8y+C 2) log|4x-8y+5|=4x-8y+C 3) log|4x+8y+5|=4x+8y+C 4) log|4x+8y+5|=4x-8y+C