Home
Class 12
MATHS
For x in x != 0, if y(x) differential fu...

For `x in x != 0, if y(x)` differential function such that `x int_1^x y(t)dt=(x+1)int_1^x t y(t)dt,` then `y(x)` equals: (where C is a constant.)

Promotional Banner

Similar Questions

Explore conceptually related problems

For x in x!=0, if y(x) differential function such that x int_(1)^(x)y(t)dt=(x+1)int_(1)^(x)ty(t)dt then y(x) equals: (where C is a constant.)

For x in R, x != 0 if y(x) is a differentiable function such that x int_(1)^(x)y(t)dt = (x+1) int_(1)^(x)ty(t)dt , then y(x) equals (where C is a constant)

If f(x) is differentiable function and f(x)=x^(2)+int_(0)^(x) e^(-t) (x-t)dt ,then f)-t) equals to

If f(x)=int_(1)^(x)(ln t)/(1+t)dt, then

Let f(x) be a differentiable function such that f(x)=x^(2)+int_(0)^(x)e^(-t)f(x-t)dt then int_(0)^(1)f(x)dx=

If int_(0)^(x) f(t)dt=x+int_(x)^(1) t f(t) dt , then the value of f(1), is

If int_0^x f(t)dt=x+int_x^1 t f(t)dt , then f(1)= (A) 1/2 (B) 0 (C) 1 (D) -1/2

Let f(x)=int_(0)^(1)|x-t|dt, then