Home
Class 12
MATHS
If g(x)=int0^xcos^4tdt , then g(x+pi) eq...

If `g(x)=int_0^xcos^4tdt ,` then `g(x+pi)` equals `g(x)+g(pi)` (b) `g(x)-g(pi)` `g(x)g(pi)` (d) `(g(x))/(g(pi))`

Promotional Banner

Similar Questions

Explore conceptually related problems

If g(x)=int_0^xcos^4tdt , then g(x+pi) equals (a)g(x)+g(pi) (b) g(x)-g(pi) (c)g(x)g(pi) (d) (g(x))/(g(pi))

If g(x)=int_(0)^(x)cos^(4)t dt, then g(x+pi) equals

If g(x)=int_(0)^(x)cos^(4) dt , then g(x+pi) equals

If g(x)=int_(0)^(x)cos^(4) t dt , then (x+pi) equals

If g(x) = int_(0)^(x) cos dt , then g(x+pi) equals

If g(x)=int_0^x cos4t\ dt ,\ t h e n\ g(x+pi) equals a. g(x)-g(pi) b. \ g(x)dotg(pi) c. (g(x))/(g(pi)) d. g(x)+g(pi)

Ifg(x)= int_(0)^(x) cos ^(4)t dt, "then " g (x+pi) equals

If g(x)=int_(0)^(x)cos4tdt then equals: (1)(g(x))/(g(pi))(2)g(x)+g(pi)(3)g(x)-g(pi)(4)g(x)*g(pi)