Home
Class 12
MATHS
The value of int0^1(8log(1+x)/(1+x^2)dx ...

The value of `int_0^1(8log(1+x)/(1+x^2)dx` is: (1) `pilog2` (2) `pi/8log2` (3) `pi/2log2` (4) `log2`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_(0)^(1)(8log(1+x))/(1+x^(2))dx is: (1)pi log2 (2) (pi)/(8)log2(3)(pi)/(2)log2(4)log2

The value of int_0^1(8log(1+x))/(1+x^2)dx is a. pilog2 b. \ pi/8log2 c. \ pi/2log2 d. log2

int_(0)^(1)(log|1+x|)/(1+x^(2))dx=(pi)/(8)log2

" 8."int_(0)^(oo)(log x)/(1+x^(2))dx

Evaluate int_(0)^(1)log(sin((pi x)/(2)))dx

int_(0)^(1)cot^(-1)(1-x+x^(2))dx=(1)(pi)/(2)-log2(2)(pi)/(2)+log2(3)pi-log2(4)pi+log2

int_(0)^(1)(logx)/(sqrt(1-x^(2)))dx=-(pi)/(2)(log2)

The value of int_(1)^(e)(1+x^(2)ln x)/(x+x^(2)ln x)*dx is :

int_(0tooo) log(1+x^2)/(1+x^2) dx equals-(A) log2(B) -a log2(C) 1/2 log2(D) -A/2 log2

Evaluate: int(log(log x)+(1)/((log x)^(2)))dx