Home
Class 12
MATHS
If a^2+b^2=23ab, then prove that: log (a...

If `a^2+b^2=23ab,` then prove that: `log (a+b)/5 = 1/2 (loga+log b)`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If a^(2)+b^(2)=23ab , then prove that log(a+b)/5=1/2(loga+logb)

If a^(2)+b^(2)=23ab, then prove that (log((a+b)))/(5)=(1)/(2)(log a+log b)

If a^(2) + b^(2) = 7 ab," prove that " log((a+b)/3) = 1/2 (log a + log b) .

If a^(2)+b^(2)=7ab, prove that log((1)/(3)(a+b))=(1)/(2)(log a+log b)

If a^(2)+b^(2)=7ab prove that ((log(a+b))/(3))'=(log a+log b)/(2)

If a^(3)+b^(3)=ab(8-3a-3b) then prove that :log((a+b)/(2))=(1)/(3)(log a+log b)

If y^(2)=xz and a^(x)=b^(y)=c^(z), then prove that (log)_(a)b=(log)_(b)c

if a^(2)+4b^(2)=12ab, then log(a+2b)

If a^(2) + b^(2) = 7 ab , then log (( a + b)/(3 )) equals