Home
Class 12
MATHS
If 4^(log9(3))+9^(log2(4))=10^(logx(83))...

If `4^(log_9(3))+9^(log_2(4))=10^(log_x(83))` then x =

Promotional Banner

Similar Questions

Explore conceptually related problems

4^(log_(9)3)+9^(log_(2)4)=10^(log_(x)83), then x is equal to

Let L denotes the value of a satisfying the equation log_(sqrt(3))(a) =(10)/(3) and M denotes the value of b satisfying the equation 4^(log_(9)^(3)) + 9^(log_(2)^(4)) = 10 ^(log_(b)^(83)). Find (L+M)

The value of ' x 'satisfying the equation,4^(log_(9)3)+9^(log_(2)4)=10^(log_(x)83) is

The value 'x' satisfying the equation, 4^(log_(g)3)+9^(log_(2)4)=10^(log_(x)83)is ____

if 2^(log_(3)9) + 25 log_(9)3 = 8 log_(x)9 then x= _______

If 4^(log16^4)+9^(log3^9)=10^(logx^83 , find x.

Solve 4^(log_(9)x)-6x^(log_(9)2)+2^(log_(3)27)=0 .

The number of solutions set of the equation 4^(log_(9)x)-6.x^(log_(9)2)+2^(log_(3)27)=0 is

Let x satisfies the equation log_(3)(log_(9)x)=log_(9)(log_(3)x) then the product of the digits in x is