Home
Class 12
MATHS
Prove that: logax xxlogby=logbx xxlogay...

Prove that: `log_ax xxlog_by=log_bx xxlog_ay`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: (log_(a)(log_(b)a))/(log_(b)(log_(a)b))=-log_(a)b

Prove that m^(log_(a)x)=x^(log_(a)m)

What are the solution of the equation log_x xy xx log_y xy + log_x(x-y)xxlog_y(x-y)=0

Prove that log_(ab)(x)=((log_(a)(x))(log_(b)(x)))/(log_(a)(x)+log_(b)(x))

4.Prove that log_(a)(bc).log_(b)(ca).log_(c)(ab)=2+log_(a)(bc)+log_(b)(ca)+log_(c)(ab)

Prove that log_(4)[log_(2){log_(2)(log_(3)81)}]=0

Prove that (log_(4)2)(log_(2)3)=(log_(4)5)(log_(5)3)

Prove that (i) log_(2)log_(2)log_(2)16=1

. If a,b and c are in GP,then log_(ax)x,log_(bx)x,log_(cx)x are in