Home
Class 12
MATHS
Prove that: a^x=10^(xlog10 a)...

Prove that: `a^x=10^(xlog_10 a)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : log_(10)tan1^(@)*log_(10)tan2^(@)...log_(10)tan89^(@)=0

If log 11=1.0414, prove that 10^11gt11^10 .

Prove that ^10C_(1)(x-1)^(2)-^(10)C_(2)(x-2)^(2)+^(10)C_(3)(x-3)^(2)+...-^(10)C_(10)(x-10)^(2)=

Prove that : ""^(25)C_(10)+""^(24)C_(10)+……..+""^(10)C_(10)=""^(26)C_(11)

Prove that :(cos10^(@)-sin10^(0))/(cos10^(@)+sin10^(0))=tan35^(@)

Prove that (cos10^(@)+sin10^(@))/(cos10^(@)-sin10^(@))=tan55^(@)

Prove that tan(pi)/(10) is a root of polynomial equation 5x^(4)-10x^(2)+1=0

Prove that: sin^(2)6x-sin^(2)4x=sin2x sin10x

Prove that sqrt(10)[(sqrt(10)+1)^(100)-(sqrt(10)-1)^(100)] is an even integer.

Prove that: sin^(2)6x-sin^(2)4x=s in2xs in10x