Home
Class 12
MATHS
log a/(y-z)=log b/(z-x)=logc/(x-y), then...

`log a/(y-z)=log b/(z-x)=logc/(x-y), then a^xb^yc^z` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

(log a)/(y-z)=(log b)/(z-x)=(log c)/(x-y), thena ^(x)b^(y)c^(z) is

(log a)/(y-z)=(log b)/(z-x)=(log c)/(x-y) then value of abc=

If (log a)/(y-z)=(log b)/(z-x)=(log c)/(x-y) the value of a^(y+z)*b^(z+x)*c^(x+y) is

If (log x)/(y-z)=(log y)/(z-x)=(log z)/(x-y), then prove that: x^(x)y^(y)z^(z)=1

If (log x)/(y-z)=(log y)/(z-x)=(log z)/(x-y) then prove that x^(y)+z^(z)+xx^(y+z)+y^(x+x)+z^(x+y)>=3

If log_(x)(z)=4,log_(10y)(z)=2 and log(xy)(z)=(4)/(7), then z^(-2) is equal to :

If log(x+z)+log(x-2y+z)=2log(x-z)," then "x,y,z are in

If (log x)/(b-c)=(log y)/(c-a)=(log z)/(a-b), then which of the following is/are true? zyz=1 (b) x^(a)y^(b)z^(c)=1x^(b+c)y^(c+b)=1( d) xyz=x^(a)y^(b)z^(c)

If 2log(x-z)-log(x-2y+z)=log(x+z), then x,y and z are in