Home
Class 12
MATHS
Find the values of x satisfying the ineq...

Find the values of x satisfying the inequalities : `log_(0.1) (4x^2-1)gtlog_(0.1) 3x`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the values of x satisfying the inequalities: log_(2)(x^(2)-24)>log_(2)(5x)

The value of x satisfying the inequalities hold: qquad log_(0.2)(x+5)>0

The value of x, satisfying the inequality log_(0.3)(x^(2)+8)>log_(0.3)9x, lies in

Find the value of x satisfying the equation,sqrt((log_(3)(3x)^((1)/(3))+log_(x)(3x)^((1)/(3)))log_(3)(x^(3)))+sqrt((log_(3)((x)/(3))^((1)/(3))+log_(x)((3)/(x))^((1)/(3)))log_(3)(x^(3)))=2

For x>1,y=log x satisfy the inequality

Find the sum of all integers satisfying the inequalities log_(5)(x-3)+1/2log_(5)3lt1/2log_(5)(2x^(2)-6x+7) and log_(3)x+log_(sqrt3)x+log_(1/3)xlt6

The set of real values of x satisfying the inequality log _(x+(1)/(x))(log_(2)((x-1)/(x+2)))>0, is equal to

Find the number of real values of x satisfying the equation log_(2)(4^(x+1)+4)*log_(2)(4^(x)+1)=3

Find the values of x satisfying the equation |x-2|^(log_(3)x^(4)-3log_(x)9)(x-2)^(10)=1 .

Find the number of real values of x satisfying the equation. log_(2)(4^(x+1)+4)*log_(2)(4^(x)+1)=log_(1//sqrt(2)) sqrt((1)/(8))