Home
Class 12
MATHS
Prove that from the equality (sin^4alpha...

Prove that from the equality `(sin^4alpha)/a+(cos^4alpha)/b=1/(a+b)` follow the relation : `(sin^8alpha)/a^3+(cos^8alpha)/b^3=1/(a+b)^3`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that from the equality (sin^(4)alpha)/(a)+(cos^(4)alpha)/(b)=(1)/(a+b) follow the relation :(sin^(8)alpha)/(a^(3))+(cos^(8)alpha)/(b^(3))=(1)/((a+b)^(3))

Q.Prove that from the equality (sin^(4)alpha)/(a)+(cos^(4)alpha)/(b)=(1)/(a+b) follows the relation; (sin^(8)alpha)/(a^(3))+(cos^(8)alpha)/(b^(3))=(1)/((a+b)^(3))

If (sin^(4)alpha)/a +(cos^(4)alpha)/b = 1/(a+b) , show that sin^(8)alpha/a^(3) +cos^(8)alpha/b^(3) =1/(a+b)^(3)

If (sin alpha)/(a)=(cos alpha)/(b), then a sin2 alpha+b cos2 alpha=

If alpha satisfies 15 sin^(4)alpha + 10 cos^(4)alpha=6 , then find the value of 27 sin^(8)alpha + 8 cos^(8) alpha

Eliminate alpha between the equations : ("sin"^(2)alpha)/(cosalpha)=a^(3) and (cos^(2)alpha)/("sin"alpha)=b^(3)

If (cos3 alpha)/(cos alpha)=(1)/(3),0

If (cos3 alpha)/(cos alpha)=(1)/(3),0

If sin alpha =(1)/(2) , prove that (3 cos alpha - 4 cos ^(3) alpha )=0.