Home
Class 12
MATHS
If A+B+C=pi, express S=sin3A+sin3B+sin3C...

If `A+B+C=pi,` express `S=sin3A+sin3B+sin3C` as a product of three trigonometric ratios. If `S=0,` Show that at least one of the angles is `60^@.`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A+B-C=3 pi, then sin A+sin B-sin C is equal to -

IfA+B-C=3 pi then sin A+sin B-sin C is equal to

Find the values of the following trigonometric ratio: (sin(5 pi))/(3)

In a Δ ABC prove that sin A-sin B-sin C=(a-s)/R

A + B + C = 0 ^ (0) rArr sin A + sin B + sin C =

If A+B+C=pi, the value of sin2A+sin2B+sin2C=k sin A sin B sin C then value of k is

If A + B + C = 2S then sin (SA) sin (SB) + sin S sin (SC) =

If A + B + C = 2S then sin (SA) + sin (SB) + sin (SC) -sin S =

In a right triangle ABC right angled at B if sin A=(3)/(5), find all the six trigonometric ratios of /_C

In triangle ABC, if sin A+sin B+sin C<=1, then (A) at least one of A,B,C must exceed 150^(@)