Home
Class 12
MATHS
Show that: (sec^2theta-tantheta)/(sec^2t...

Show that: `(sec^2theta-tantheta)/(sec^2theta+tantheta)` lies between `3 and 1/3`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that (sec^(2)theta-tan theta)/(sec^(2)theta+tan theta) lies between 3 and (1)/(3).

Show that (sec^(2)theta-tan theta)/(sec^(2)theta+tan theta) lies between (1)/(3) and 3.

Show that (sec^(2)theta - tan theta)/(sec^(2)+ tan theta) lies between 1/3 and 3 for all real theta .

If y=(sec^(2)theta-tantheta)/(sec^(2)theta+tantheta)' then

Statement-1: if thetane2npi+(pi)/(2),n inZ, then (sec^(2)theta+tantheta)/(sec^(2)theta-tantheta)"lies between"1/3 and 3. Statement-2: If x inR, then 1/3le(x^(2)-x+1)/(x^(2)+x+1)le3.

tantheta+tan2theta=tan3theta

int(sectheta)/(sec theta+tantheta)d theta=

If sec theta - tan theta = 1/2, then theta lies in the

Prove that : sqrt((1-cos^(2)theta)sec^(2)theta)=tantheta

Prove that- (sectheta+tantheta)/(sec-tantheta)=((1+sintheta)/costheta)^2