Home
Class 12
MATHS
Show that the expression costheta(sinthe...

Show that the expression `costheta(sintheta+sqrt(sin^2theta+sin^2alpha))` always lies between the values of `+-sqrt(1+sin^2alpha)`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If abs(cos theta{sin theta+sqrt(sin^2theta+sin^2alpha)})lek , then the value of k

sqrt3costheta+sin theta=sqrt2

Find the value of (sintheta)/(sqrt(1-sin^(2)theta))

(sin3 alpha)/(cos2 alpha)<0 if alpha lies between

The minimum and maximum values of expression y=cos theta(sin theta+sqrt(sin^(2)theta+sin^(2)alpha))

int((sintheta+costheta))/sqrt(sin2theta)"d"theta=

If sin^2 theta + sin^2 alpha =1 , then what is the value of cot (theta+alpha) ?

If 3costheta + 4sin theta = A sin (theta +alpha) , then values of A and alpha are

Show that for all real theta , the expression a sin^(2)theta + b sin theta cos theta +c cos^(2)theta lies between 1/2(a+c) - 1/2 sqrt(b^(2) +(a-c)^(2)) and 1/2(a+c) + 1/2 sqrt(b^(2) +(a-c)^(2))