Home
Class 12
MATHS
If f(x) = sin^6x+ cos^6 x and M1 and M2...

If `f(x) = sin^6x+ cos^6 x and M_1 and M_2`, be the maximum and minimum values of `f(x)` for all values ofx then `M_1-M_2` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=sin^(6)x+cos^(6)x and M_(1) and M_(2) be the maximum and minimum values of f(x) for all values of t then M_(1)-M_(2) is equal to

If f(x)=cos2x+4sin x+5, then the difference of maximum and minimum values of f(x) is

If maximum and minimum values of |sin^(-1)x|+|cos^(-1)x| are M and m, then M+m is

The maximum and minimum values of f(x)= 6 sin x cos x +4cos2x are respectively

Q.Let f(x)=10-|x-10|AA x in[-9,9] If M and m be the maximum and minimum value of f(x) respectively then

Find the maximum and minimum values of f(x)=sin x+(1)/(2)cos2x in [0,pi/2]

Find the maximum and minimum value of f(x)=sin x+(1)/(2)cos2x in [0,(pi)/(2)]

If f(x)=max(sin x,cos x) Vx e R. Then sum ofmaximum and minimum values of f(x) is M then find (1)/(M+(1)/(sqrt(2)))