Home
Class 12
MATHS
If tan(alpha)= p/q where alpha=6 beta, a...

If `tan(alpha)= p/q` where `alpha=6 beta`, `alpha` being an acute angle, prove that: `1/2 (p cosec 2beta - sec2beta) =sqrt(p^2+q^2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If tan(alpha)=(p)/(q) where alpha=6 beta,alpha being an acute angle,prove that: (1)/(2)(p cos ec2 beta-sec2 beta)=sqrt(p^(2)+q^(2))

If tan alpha=(p)/(q), where alpha=6 beta,alpha being acute angle,prove that (1)/(2){p cos ec2 beta-q sec2 beta}=sqrt(p^(2)+q^(2))

Let tanalpha = a/b, alpha being an acute angle. Denote by f(a,b) the value of the expression a " cosec "2beta - b sec 2beta, where alpha = 6 beta . Then f(8,15) is equal to …………….

If 2tan beta+cot beta=tan alpha, prove that cot beta=2tan(alpha-beta)

If cos alpha=tan beta and cos beta=tan alpha where alpha and beta are acute angles then sin alpha

if 2tan beta+cot beta=tan alpha then prove that cot beta=2tan(alpha-beta)

If cos^2alpha-sin^2alpha=tan^2beta," then prove that "tan^2alpha=cos^2beta-sin^2beta .

If alpha and beta are acute angles and cos2 alpha=(3cos2 beta-1)/(3-cos2 beta). Prove that :tan alpha=sqrt(2)tan beta

If sin (alpha - beta) =1/2 and cos (alpha + beta) =1/2, where alpha and beta are positive acute angles, then alpha and beta are

alpha and beta are acute angles and cos2 alpha=(3cos2 beta-1)/(3-cos2 beta) then tan alpha cot beta=