Home
Class 12
MATHS
If A,B,C are the angles of a given trian...

If A,B,C are the angles of a given triangle ABC . If cosA.cosB.cosC=`(sqrt3-1)/8` and sinA.sinB.sinC=`(3+sqrt3)/8`The cubic equation whose roots are `tanA, tanB, tanC` is (A) `x^3-(3+2sqrt(3))x^2+(5+4sqrt(3))x-(3+2sqrt(3))=0` (B) `x^3-(3+-2sqrt(3))x^2+(5+4sqrt(3))x+(3+2sqrt(3))=0` (C) `x^3+(3+2sqrt(3))x^2+(5+4sqrt(3))x+(3+2sqrt(3))=0` (D) `x^3-(3+2sqrt(3))x^2+(5+4sqrt(3))x+(3+2sqrt(3))=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

2sqrt(3)x^(2)-5x+sqrt(3)

2sqrt(3)x^(2)+x-5sqrt(3)

If A,B,C are the angles of a given triangle ABC . If cosA.cosB.cosC= (sqrt3-1)/8 and sinA.sinB.sinC= (3+sqrt3)/8 The value of tanA+tanB+tanBtanC=tanC tanA is (A) 5-4sqrt(3) (B) 5+3sqrt(3) (C) 6+sqrt(3) (D) 6-sqrt(3)

If A,B,C are the angles of a given triangle ABC . If cosA.cosB.cosC= (sqrt3-1)/8 and sinA.sinB.sinC= (3+sqrt3)/8 The value of tanA+tanB+tanC is (A) (3+sqrt(3)/(sqrt(3)-1)) (B) (sqrt(3)+4/(sqrt(3)-1)) (C) (6-sqrt(3)/(sqrt(3)-1)) (D) (sqrt(3)+sqrt(2)/(sqrt(3)-1))

2sqrt(3)x^(2)+x-5sqrt(3)=0

(4) sqrt(3)x^(2)+2x-sqrt(3)=0

(2+sqrt(3))^(x)+(2-sqrt(3))^(x)=4

Solve: 4sqrt(3)x^(2)+5x-2sqrt(3)=0.

x^(2)+(3-sqrt(5))x-3sqrt(5)=0

solve for x sqrt(3)x^(2)-2sqrt(2)x-2sqrt(3)=0