Home
Class 12
MATHS
If sin^3x sin3x= sum(n=0)^6 cn cos^n x w...

If `sin^3x sin3x= sum_(n=0)^6 c_n cos^n x` where `c_0, c_1, c_2,...c_6` are constants. then find the value of `c_4`

Promotional Banner

Similar Questions

Explore conceptually related problems

If sin^(3)x sin3x=sum_(n=0)^(6)c_(n)cos^(n)x where c_(0),c_(1),c_(2),...c_(6) are constants.then find the value of c_(4)

if sin^(3)x sin3x=sum C_(m)cos^(m)x where c_(0),c_(1),c_(2).....c_(6) are constants then :

Let sin^(3)x* sin 3x = sum_(m=0)^(n) c_m cos mx be an identity in x where c_1, c_2 , etc., are constants, c_n ne 0 . Then n=______, c_5 =_____.

Suppose sin^(3)xsin3x= sum_(n=0)^(n) c_(n)cosnx is an identify in n, where C_(0), C_(1) , …..C_(n) are constants and C_(n) ne 0, Then , the value of n is ___________.

if sin^(3)x-sin3x=sum_(m=0rarr n)c_(m)*cos mx is an identity in x, where c_(m)^(=0rarr n) are constant then the value of n is

Suppose sin^(3)x sin3x=sum_(m=0)^(n)C_(m)cos mx is an identity in x, where C_(0),C_(1)...,C_(n) are constants and C_(n)!=0, the the value of n is

sin^(3)x sin3x=c_(0)-c_(1)cos x+c_(2)cos2x+....c_(n)cos nx

If C_(0), C_(1), C_(2),..., C_(n) are binomial coefficients in the expansion of (1 + x)^(n), then the value of C_(0) - (C_(1))/(2) + (C_(2))/(3) - (C_(3))/(4) +...+ (-1)^(n) (C_(n))/(n+1) is