Home
Class 12
MATHS
Prove that: "tan"142""(1^0)/2=2+sqrt(2)-...

Prove that: `"tan"142""(1^0)/2=2+sqrt(2)-sqrt(3)-sqrt(6)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: tan142(1^(@))/(2)=2+sqrt(2)-sqrt(3)-sqrt(6)

Prove that: "tan" 142(1^(@))/(2)=2+sqrt2-sqrt3-sqrt6 .

Show that cot(142(1)/(2))^(@)=sqrt(2)+sqrt(3)-2-sqrt(6)

Prove that ,tan7(1)/(2)@=(sqrt(4-sqrt(6)-sqrt(2)))/(sqrt(3)*sqrt(2)+sqrt(6)-4)

Prove that : [tan^(-1) (-sqrt(3))] = -2/sqrt(3)

Prove that: tan(pi)/(16)=sqrt(4+2sqrt(2))-(sqrt(2)+1)

Prove that tan(pi)/(16)=sqrt(4+2sqrt(2))-(sqrt(2)+1)

Prove that tan7 1^circ/2 = sqrt6 - sqrt3 + sqrt2 - 2 .

int_(0)^( Prove that )sqrt(1+cos2x)dx=22sqrt(2)-sqrt((3)/(2))

Prove that : tan^(-1)((sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2))))=(pi)/(4)+(1)/(2) cos^(-1)x^(2)