Home
Class 12
MATHS
If cos(theta-alpha)= a, sin (theta-beta)...

If `cos(theta-alpha)= a, sin (theta-beta)=b,` prove that `a^2-2a b sin(alpha-beta)+b^2=cos^2(alpha-beta)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If cos(theta-alpha)=p and sin(theta+beta)=q show that p^(2)+q^(2)-2pq sin(alpha+beta)=cos^(2)(alpha+beta)

Eliminate theta between a = cos(theta - alpha) , b = sin(theta - beta) and prove that a^(2) -2ab sin(alpha - beta) + b^(2) = cos^(2)(alpha - beta) .

If sin(theta+alpha)=a and sin(theta+beta)=b, prove that cos2(alpha-beta)-4ab cos(alpha-beta)=1-2a^(2)-2b^(2)

If cos(theta-alpha)=a and cos(theta-beta)=b then the value of sin^(2)(alpha-beta)+2ab cos(alpha-beta)

If cos (theta -alpha) =a, sin (theta - beta) =b, then cos ^(2) (alpha - beta) + 2 ab sin (alpha - beta) is equal to

It is given that cos(theta-alpha)=a, cos(theta-beta)=b What is sin^(2)(alpha-beta)+2abcos(alpha-beta) equal to ?

s(theta-alpha)=a and cos(theta-beta)=b, then sin^(2)(alpha-beta)+2ab cos(alpha-beta)=

If cos (theta - alpha) = a, cos (theta - beta) = b , then the value of sin^(2) (alpha - beta) + 2ab cos (alpha - beta) is