Home
Class 12
MATHS
If a, b, c and k are real constants and ...

If a, b, c and k are real constants and `alpha, beta, gamma` are variables subject to the condition that `a tanalpha + btanbeta+ c tangamma=k` , then prove using vectors that `tan^2 alpha + tan^2 beta+ tan^2gamma>= k^2 /(a^2 + b^2 + c^2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a ,b,c and k are real constants and alpha,beta,gamma are variables subject to the condition that a tan alpha+b tan beta+c tan gamma=k, then prove using vectors that tan^(2)alpha+tan^(2)beta+tan^(2)gamma>=(k^(2))/(a^(2)+b^(2)+c^(2))

If alpha + beta + gamma + delta = 2pi then prove that sum tan alpha = tan alpha *tan beta* tan gamma* tan delta *sum cot alpha .

If alpha+beta+gamma=2pi , then show that tan.alpha/2 + tan.beta/2 + tan.gamma/2 = tan.alpha/2 tan.beta/2 tan.gamma/2 .

if 2tan beta+cot beta=tan alpha then prove that cot beta=2tan(alpha-beta)

If cos(alpha + gamma)/cos(alpha - gamma) = cos 2beta then tan alpha, tan beta and tan gamma are

If alpha, beta be the solutions of theta for the equation a tan theta + b sec theta = c then prove that tan(alpha+ beta) = 2ac/(a^(2)-c^(2)) .

Prove that: tan(alpha-beta)+tan(beta-gamma)+tan (gamma-alpha) = tan(alpha-beta) tan (beta-gamma) tan (gamma-alpha) .