Home
Class 12
MATHS
If z^7+1 =0 then cos(pi/7) cos((3pi)/7) ...

If `z^7+1 =0` then `cos(pi/7) cos((3pi)/7) cos((5pi)/7)` is (A) `1/8` (B) `-1/8` (C) `1/(2sqrt2)` (D) `1/2`

Promotional Banner

Similar Questions

Explore conceptually related problems

If z^(7)+1=0 then cos((pi)/(7))cos((3 pi)/(7))cos((5 pi)/(7)) is (A)(1)/(8) (B) -(1)/(8)(C)(1)/(2sqrt(2))(D)(1)/(2)

Prove that cos((2pi)/7) cos((4pi)/7) cos((8pi)/7) =1/8

Prove that cos((2pi)/7)cos((4pi)/7)cos((8pi)/7)=1/8

the value of (cos pi)/(7)cos(2(pi)/(7))cos(3(pi)/(7)) is

Prove that 4cos((2pi)/7).cos(pi/7)-1=2cos((2pi)/7) .

Prove that 4cos(2 pi)/(7)*cos(pi)/(7)-1=2cos(2 pi)/(7)

prove that cos2(pi)/(7)+cos4(pi)/(7)+cos6(pi)/(7)=-(1)/(2)

Prove that: cos(pi)/(7)cos(2 pi)/(7)cos(4 pi)/(7)=-(1)/(8)

cos ((pi) / (8)) cos ((3 pi) / (8)) cos ((5 pi) / (8)) cos ((7 pi) / (8)) =

cos ((pi) / (7)) * cos ((2 pi) / (7)) * cos ((3 pi) / (7)) =