Home
Class 12
MATHS
if A+B+C=pi, prove that cosA+cosB + cosC...

if `A+B+C=pi`, prove that `cosA+cosB + cosC` greater than or equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

if A+B+C=pi, prove that cos A+cos B+cos C greater than or equal to

If A+B+C = pi , prove that : cosA- cosB - cosC = 1-4sinA//2cosB//2cosC//2 .

If A+B+C=pi, and cosA=cosB*cosC then tanB*tanC has the value equal to (i)1 (ii)1/2 (iii)2 (iv)3

If A+B+C=pi , prove that : sinA cosB cosC +sinB cosC cosA + sinC cosA cosB = sinA sinB sinC .

If A+B+C=pi , prove that : cosA sinB sinC +cosB sinC sinA+cosC sinA sinB=1+cosA cosB cosC .

If A+B+C=180^0 , prove that : cos^2 A + cos^2 B + cos^2 C + 2cosA cosB cosC=1 .

If A+B+C=pi, prove that sin2A-sin2B+sin2C=4cosA sin B cosC .

If A+B=pi/3 , and cosA+cosB=1 , then

If A+B+C+D = 2pi , prove that : cosA +cosB+cosC+cosD=4 cos( (A+B)/2) cos((B+C)/(2) )cos( (C+A)/2)

If A + B + C = 0, then prove that Det [[1, cosC, cosB], [cosC, 1, cosA], [cosB, cosA, 1]] = 0