Home
Class 12
MATHS
If f(x) = cos [pi]x + cos [pi x], where ...

If `f(x) = cos [pi]x + cos [pi x]`, where `[y]` is the greatest integer function of y then `f(pi/2)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=cos[pi^(2)]x+cos[-pi^(2)]x , where [x] stands for the greatest integer function, then

If f(x)=cos[(pi)/(x)]cos((pi)/(2)(x-1)); where [x] is the greatest integer function of x, then f(x) is continuous at :

Let f(x) = (sin (pi [ x - pi]))/(1+[x^2]) where [] denotes the greatest integer function then f(x) is

Let f(x) = (sin (pi [ x + pi]))/(1+[x]^(2)) where [] denotes the greatest integer function then f(x) is

Let f(x)=cos x and g(x)=[x+1],"where [.] denotes the greatest integer function, Then (gof)' (pi//2) is

If f(x)=cos[pi^(2)]x+cos[-pi^(2)]x, where [x] stands for the greatest integer function,then (a) f((pi)/(2))=-1( b) f(pi)=1( c) f(-pi)=0 (d) f((pi)/(4))=1

If f:R to R is function defined by f(x) = [x]^3 cos ((2x-1)/2)pi , where [x] denotes the greatest integer function, then f is :

f(x)=2^(cos^(4)pi x+x-[x]+cos^(2)pi x), where [.] denotes the greatest integer function.