Home
Class 12
MATHS
If a=sin\ pi/18 sin\ (5pi)/18 sin\ (7pi)...

If `a=sin\ pi/18 sin\ (5pi)/18 sin\ (7pi)/18,` and `x` is the solution of the equation `y=2[x]+2` and `y=3[x-2],` where `[x]` denotes the integral part of `x` then `a=` (A) `[x]` (B) `1/[x]` (C) `2[x]` (D) `[x]^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Principal solutions of the equation sin2x+cos2x=0, where pi

Let f(x)=(sin^(101)x)/([(x)/(pi)]+(1)/(2)) , where [x] denotes the integral part of x is

The period of the function f(x)=cos2pi{2x}+ sin2 pi {2x} , is ( where {x} denotes the functional part of x)

The period of function 2^({x}) +sin pi x+3^({x//2})+cos pi x (where {x} denotes the fractional part of x) is

The number of solutions of the equation 3"sin"^(2) x - 7"sin" x +2 = 0 in the interval [0, 5 pi] , is

[y] is the integral part of y, then int_((pi)/(2))^((3 pi)/(2))[2sin x]dx

The number of solutions of the equation sin x . Sin 2x. Sin 3x=1 in [0,2pi] is

If f(x)=sin[pi^(2)]x+sin[-pi^(2)]x where [x] denotes the greatest integer less than or equal to x then

If x+y=(4pi)/(3) and sin x = 2 sin y , then

If x in[0,(pi)/(2)] then the number of solutions of the equation sin7x+sin4x+sin x=0 is