Home
Class 12
MATHS
In a Delta ABC, prove that (sinA+sinB)(s...

In a `Delta ABC,` prove that `(sinA+sinB)(sinB+sinC)(sinC+sinA)>sinAsinBsinC.`

Promotional Banner

Similar Questions

Explore conceptually related problems

In DeltaABC , prove that: sinB+sinC gt sinA

In any Delta ABC , prove that a("sin B - sin C")+b("sin C - sinA")+c("sinA - sinB")=0 .

In DeltaABC , prove that: sinA+sinB-sinC=4sinA/2sinB/2cosC/2

In DeltaABC , prove that: a) (sin2A + sin2B + sin2C)/(sinA+sinB+sinC) = 8sinA/2 sinB/2sinC/2

If a DeltaABC , the value of sinA+sinB+sinC is

In a triangle ABC , prove that ,(sinA+sinB)/2lt=sin((A+B)/2)

If A+B+C=pi , prove that : sin2A+sin2B+sin2C=4sinA sinB sinC

In any DeltaABC , if (sinA+sinB+sinC)xx(sinA+sinB-sinC)=3sinAsinB , then

In triangleABC, a(sinB-sinC)+b(sinC-sinA)+c(sinA-sinB)=

Show that sinA*sin(B-C)+sinB*sin(C-A)+sinC*sin(A-B)=0 .