Home
Class 12
MATHS
If cos^4 theta + a, sin^4theta + a are ...

If ` cos^4 theta + a, sin^4theta + a `are the roots of the equation ` x^2 + 2bx + b = 0 ` and ` cos^2 theta + beta, sin^2 theta ` are theroots of the equation ` x^2 + 4x + 2 = 0,` then values of b are

Promotional Banner

Similar Questions

Explore conceptually related problems

If cos^(4)theta+a,sin^(4)theta+a arethe~ roots~ of~ the~ equation x^(2)+2bx+b=0 and cos^(2)theta+beta,sin^(2)theta are theroots of the equation x^(2)+4x+2=0, then values of b are

If cos^(4)theta+alpha and sin^(4)theta+alpha are the roots of the equation x^(2)+2bx+b=0and cos^(2)theta+beta,sin^(2)theta+beta are the roots of the equation x^(2)+4x+2=0 then values of b are 2 b.-1 c.-2 d.2

If cos^(4)theta+p, sin^(4)theta+p are the roots of the equation x^(2)+a(2x+1)=0 and cos^(2)theta+q,sin^(2)theta+q are the roots of the equation x^(2)+4x+2=0 then a is equal to

If sin theta and cos theta are the roots of the equation ax^(2)-bx+c=0, then a,b and c satisfy the relation

If sin theta,cos theta are the roots of the equation 2x^(2)-2sqrt(2)x+1=0, then theta is equal to

8sin theta cos theta cos2 theta cos4 theta=sin x the x=

If (sin theta) and (cos theta) are the roots of the equation ax^(2)+bx+c=0 , where a,b,c are the sides of triangleABC , then:=

If sin theta, cos theta are the roots of the equation ax^(2)+bx+c=0 then find the value of ((a+c)^(2))/(b^(2)+c^(2))