Home
Class 12
MATHS
If A + B + C=pi, then find the minimum v...

If `A + B + C=pi`, then find the minimum value of `cot^2A + cot^2B + cot^2C`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A+B+C=pi, then find the minimum value of cot^(2)A+cot^(2)B+cot^(2)C

In Delta ABC, if cot A+cot B+cot C=0 then find the value of cos A cos B cos C.

In o+ABC, if cot A+cot B+cot C=0 then find the value of cos A cos B cos C

a cot A+b cot B+c cot C=

In /_\ABC ,if a^(2)+b^(2)=3c^(2) ,then find the value of cot A+cot B-cot C?

In a triangle ABC if a^(2)+b^(2)=101c^(2) then find the value of (cot C)/(cot A+cot B)

Let a,b,c,d he real numbers such that a+b+c+d=10, then the minimum value of ^(2)cot9^(@)-b^(2)cot27^(@)+c^(2)cot63^(@)+d^(2)cot81^(@) is sqrt(n),(n in N) find n.

If A+B+C=pi , prove that: cot^2 A+cot^2 B + cot^2 C ge 1